Домой / Дымоход / Характеристика химического элемента германия. Хватает ли германия вашему организму: в чем польза микроэлемента, как выявить нехватку или переизбыток Германий валентные электроны

Характеристика химического элемента германия. Хватает ли германия вашему организму: в чем польза микроэлемента, как выявить нехватку или переизбыток Германий валентные электроны

Химический элемент, открытый в 1886 г. в редком минерале аргиродите, найденном в Саксонии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. германий (назв. в честь родины ученого, открывшего элемент) хим. элемент,… … Словарь иностранных слов русского языка

- (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886 … Современная энциклопедия

германий - Ge Элемент IV группы Периодич. системы; ат. н. 32, ат. м. 72,59; тв. вещ во с металлич. блеском. Природный Ge — смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Ge предсказал в 1871 г. Д. И.… … Справочник технического переводчика

Германий - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886. … Иллюстрированный энциклопедический словарь

- (лат. Germanium) Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Назван от латинского Germania Германия, в честь родины К. А. Винклера. Серебристо серые кристаллы; плотность 5,33 г/см³, tпл 938,3 … Большой Энциклопедический словарь

- (символ Ge), бело серый металлический элемент IV группы периодической таблицы МЕНДЕЛЕЕВА, в которой были предсказаны свойства еще не открытых элементов, в частности, германия (1871 г.). Открыт элемент в 1886 г. Побочный продукт выплавки цинковых… … Научно-технический энциклопедический словарь

Ge (от лат. Germania Германия * a. germanium; н. Germanium; ф. germanium; и. germanio), хим. элемент IV группы периодич. системы Менделеева, ат.н. 32, ат. м. 72,59. Природный Г. состоит из 4 стабильных изотопов 70Ge (20,55%), 72Ge… … Геологическая энциклопедия

- (Ge), синтетич. монокристалл, ПП, точечная группа симметрии m3m, плотность 5,327 г/см3, Tпл=936 °С, тв. по шкале Мооса 6, ат. м. 72,60. Прозрачен в ИК области l от 1,5 до 20 мкм; оптически анизотропен, для l=1,80 мкм коэфф. преломления n=4,143.… … Физическая энциклопедия

Сущ., кол во синонимов: 3 полупроводник (7) экасилиций (1) элемент (159) … Словарь синонимов

ГЕРМАНИЙ - хим. элемент, символ Ge (лат. Germanium), ат. н. 32, ат. м. 72,59; хрупкое серебристо серое кристаллическое вещество, плотность 5327 кг/м3, bил = 937,5°С. В природе рассеян; добывают его главным образом при переработке цинковой обманки и… … Большая политехническая энциклопедия

Книги

  • Ионное легирование полупроводников (кремний и германий) , Дж. Мейер, Л. Эриксон, Дж. Дэвис. Книга посвящена возникшему в последние годы методу введения в полупроводники примесных элементов в виде ускоренных ионов. Метод позволяет регулировать плотностьпримесных атомов и глубину их…
  • Жизнь вне Земли , В. Фирсов. Успехи в освоении космоса заставляют уделять все больше внимания проблеме жизни вне Земли: из области научной фантастики эта проблема переходит в область научныхисследований. Книга…

Химический элемент германий находится в четвертой группе (подгруппе главной) в таблице элементов Менделеева. Он относится к семейству металлов, его относительная атомная масса составляет 73. По массе содержание германия в земной коре оценивается показателем 0,00007 процента по массе.

История открытия

Химический элемент германий был установлен благодаря прогнозам Дмитрия Ивановича Менделеева. Именно им предсказано существование экасилиция, были даны рекомендации по его поиску.

Считал, что данный металлический элемент находится в титановых, циркониевых рудах. Менделеев пытался своими силами найти данный химический элемент, но его попытки не увенчались успехом. Только спустя пятнадцать лет на прииске, расположенном в Химмельфюрсте, был найден минерал, получивший название аргиродит. Своему названию данное соединение обязано серебру, обнаруженному в этом минерале.

Химический элемент германий в составе был обнаружен только после того, как к исследованиям приступила группа химиков из горной академии г. Фрейберга. Под руководством К. Винклера они выяснили, что на долю оксидов цинка, железа, а также на серу, ртуть приходится только 93 процента минерала. Винклер предположил, что оставшиеся семь процентов приходится на неведомый в то время химический элемент. После проведения дополнительных химических экспериментов был обнаружен германий. О своем открытии химик сообщил в докладе, представил информацию, полученную о свойствах нового элемента, Немецкому химическому обществу.

Химический элемент германий был представлен Винклером в качестве неметалла, по аналогии с сурьмой и мышьяком. Химик хотел назвать его нептунием, но это название уже использовалось. Тогда его стали называть германий. Химический элемент, открытый Винклером, вызвал серьезную дискуссию между ведущими химиками того времени. Немецкий ученый Рихтер предположил, что это и есть тот самый экасилициум, о котором говорил Менделеев. Спустя некоторое время данное предположение было подтверждено, что доказало жизнеспособность периодического закона, созданного великим русским химиком.

Физические свойства

Как можно охарактеризовать германий? Химический элемент имеет 32 порядковый номер в Менделеева. Данный металл плавится при 937,4 °С. Температура кипения этого вещества составляет 2700 °С.

Германий - элемент, который впервые стали применять в Японии для медицинских целей. После многочисленных исследований германийорганических соединений, проводимых на животных, а также в ходе исследований на людях, удалось обнаружить положительное воздействие таких руд на живые организмы. В 1967 году доктору К. Асаи удалось обнаружить тот факт, что у органического германия существует огромный спектр биологического воздействия.

Биологическая активность

Какова характеристика химического элемента германия? Он способен переносить кислород по всем тканям живого организма. Попадая в кровь, он ведет себя по аналогии с гемоглобином. Германий гарантирует полноценное функционирование всех систем организма человека.

Именно этот металл является стимулятором размножения клеток иммунитета. Он, в виде органических соединений, позволяет формировать гамма-интерфероны, которые подавляют размножение микробов.

Германий препятствует образованию злокачественных опухолей, не дает развиваться метастазам. Органические соединения данного химического элемента способствуют выработке интерферона, защитной белковой молекулы, которая вырабатывается организмом в качестве защитной реакции на появление инородных тел.

Области применения

Противогрибковое, антибактериальное, противовирусное свойство германия стало основой сфер его применения. В Германии этот элемент в основном получили как побочный продукт переработки цветных руд. Разными способами, которые зависят от состава исходного сырья, выделяли германиевый концентрат. В его составе содержалось не больше 10 процентов металла.

Как именно в полупроводниковой современной технике применяется германий? Характеристика элемента, данная ранее, подтверждает возможность его использования для производства триодов, диодов, силовых выпрямителей, кристаллических детекторов. Также германий используется при создании дозиметрических приборов, устройств, которые необходимы для измерения напряженности постоянного и переменного магнитного поля.

Существенную область применения данного металла составляет изготовление детекторов инфракрасного излучения.

Перспективным является использование не только самого германия, но и некоторых его соединений.

Химические свойства

Германий при комнатной температуре довольно стоек к воздействию влаги, кислорода воздуха.

В ряду - германий - олово) наблюдается увеличение восстановительной способности.

Германий устойчив к воздействию растворов соляной и серной кислот, он не вступает во взаимодействие с растворами щелочей. При этом данный металл довольно быстро растворяется в царской водке (семи азотной и соляной кислот), а также в щелочном растворе пероксида водорода.

Как дать полную характеристику химическому элементу? Германий и его сплавы необходимо проанализировать не только по физическим, химическим свойствам, но и областям применения. Процесс окисления германия азотной кислотой протекает достаточно медленно.

Нахождение в природе

Попробуем дать характеристику химическому элементу. Германий в природе обнаружен только в виде соединений. Среди самых распространенных в природе германийсодержащих минералов выделим германит и аргиродит. Кроме того, германий присутствует в сульфидах и силикатах цинка, а в незначительном количестве он есть в различных типах каменного угля.

Вред для здоровья

Какое воздействие оказывает на организм германий? Химический элемент, электронная формула которого имеет вид 1е; 8 е; 18 е; 7 е, может негативно воздействовать на человеческий организм. Например, при загрузке германиевого концентрата, измельчении, а также загрузке диоксида данного металла, могут появляться профессиональные заболевания. В качестве иных источников, приносящих вред здоровью, можно рассматривать процесс переплавки порошка германии в бруски, получение угарного газа.

Адсорбированный германий можно достаточно быстро вывести из организма, в большей степени с мочой. В настоящее время нет детальной информации о том, насколько токсичны неорганические соединения германия.

Раздражающее действие на кожу оказывает тетрахлорид германия. В клинических испытаниях, а также при длительном пероральном приеме кумулятивных количеств, которые достигали 16 граммов спирогермания (органического противоопухолевого препарата), а также иных германиевых соединений, обнаружена нефротоксическая и нейротоксическая активность данного металла.

Подобные дозировки в основном не характерны для промышленных предприятий. Те эксперименты, что проводились на животных, были направлены на изучение действия германия и его соединений на живой организм. В результате удалось установить ухудшение здоровья при вдыхании существенного объема пыли металлического германия, а также его диоксида.

Ученые обнаружили в легких животных серьезные морфологические изменения, которые аналогичны пролиферативным процессам. Например, было выявлено существенное утолщение альвеолярных разделов, а также гиперплазия лимфатических сосудов вокруг бронхов, утолщения кровеносных сосудов.

Диоксид германия не оказывает раздражающего действия на кожу, но непосредственный контакт этого соединения с оболочкой глаза приводит к образованию германиевой кислоты, являющейся серьезным глазным раздражителем. При продолжительных внутрибрюшинных инъекциях были обнаружены серьезные изменения в периферической крови.

Важные факты

Самыми вредными соединениями германия являются хлорид и гидрид германия. Последнее вещество провоцирует серьезное отравление. В результате морфологического обследования органов животных, которые погибли при острой фазе, показали существенные нарушения в системе кровообращения, а также клеточные модификации в паренхиматозных органах. Ученые пришли к выводу, что гидрид представляет собой многоцелевой яд, который поражает нервную систему, угнетает систему периферийного кровообращения.

Тетрахлорид германия

Он является сильным раздражителем дыхательной системы, глаз, кожи. В концентрации 13 мг/м 3 он способен подавлять на клеточном уровне легочный ответ. При увеличении концентрации данного вещества наблюдается серьезное раздражение верхних дыхательных путей, существенные изменения ритма и частоты дыхания.

Отравление данным веществом приводит к катарально-десквамативным бронхитам, интерстициальной пневмонии.

Получение

Так как в природе германий представлен в качестве примеси к никелевым, полиметаллическим, вольфрамовым рудам, для выделения чистого металла в промышленности проводят несколько трудоемких процессов, связанных с обогащением руды. Из нее выделяют сначала оксид германия, затем проводят его восстановление водородом при повышенной температуре до получения простого металла:

GeO2 + 2H2 = Ge + 2H2O.

Электронные свойства и изотопы

Германий считают непрямозонным типичным полупроводником. Величина его диэлектрической статистической проницаемости составляет 16, а величина сродства к электрону - 4эВ.

В тонкой пленке легированным галлием можно придать германию состояние сверхпроводимости.

В природе присутствует пять изотопов этого металла. Из них стабильными являются четыре, а пятый подвергается двойному бета-распаду, период полураспада составляет 1,58×10 21 лет.

Заключение

В настоящее время органические соединения данного металла применяют в разных сферах промышленности. Прозрачность в инфракрасной спектральной области металлического германия сверхвысокой чистоты важна для изготовления оптических элементов инфракрасной оптики: призм, линз, оптических окон современных датчиков. Самой распространенной областью использования германия считают создание оптики тепловизионных камер, которые функционируют в диапазоне длин волн от 8 до 14 микрон.

Подобные устройства применяют в военной технике для систем инфракрасного наведения, ночного видения, пассивного тепловидения, противопожарных системах. Также германий имеет высокий показатель преломления, что необходимо для антибликового покрытия.

В радиотехнике транзисторы на основе германия имеют характеристики, которые по многим показателям превышают показатели кремниевых элементов. Обратные токи у германиевых элементов существенно выше, чем у их кремниевых аналогов, что позволяет существенно увеличивать эффективность подобных радиоприборов. Учитывая, что германий не так распространен в природе, как кремний, в радиоприборах в основном применяют кремниевые полупроводниковые элементы.

ОПРЕДЕЛЕНИЕ

Германий - тридцать второй элемент Периодической таблицы. Обозначение - Ge от латинского «germanium». Расположен в четвертом периоде, IVA группе. Относится к полуметаллам. Заряд ядра равен 32.

В компактном состоянии германий имеет серебристый цвет (рис. 1) и по внешнему виду похож на металл. При комнатной температуре он устойчив к действию воздуха, кислорода, воды, соляной и разбавленной серной кислот.

Рис. 1. Германий. Внешний вид.

Атомная и молекулярная масса германия

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии германий существует в виде одноатомных молекул Ge, значения его атомной и молекулярной масс совпадают. Они равны 72,630.

Изотопы германия

Известно, что в природе германий может находиться в виде пяти стабильных изотопов 70 Ge (20,55%), 72 Ge (20,55%), 73 Ge (7,67%), 74 Ge (36,74%) и 76 Ge (7,67%). Их массовые числа равны 70, 72, 73, 74 и 76 соответственно. Ядро атома изотопа германия 70 Ge содержит тридцать два протона и тридцать восемь нейтронов, остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные нестабильные радиоактивные изотопы германия с массовыми числами от 58-ми до 86-ти, среди которых наиболее долгоживущим является изотоп 68 Ge с периодом полураспада равным 270,95 суток.

Ионы германия

На внешнем энергетическом уровне атома германия имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 .

В результате химического взаимодействия германий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ge 0 -2e → Ge 2+ ;

Ge 0 -4e → Ge 4+ .

Молекула и атом германия

В свободном состоянии германий существует в виде одноатомных молекул Ge. Приведем некоторые свойства, характеризующие атом и молекулу германия:

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Рассчитайте массовые доли элементов, входящих в состав оксида германия (IV), если его молекулярная формула имеет вид GeO 2 .
Решение Массовая доля элемента в составе какой-либо молекулы определяется по формуле:

ω (Х) = n × Ar (X) / Mr (HX) × 100%.

Германий (от латинского Germanium), обозначается «Ge», элемент IV-й группы периодической системы химических элементов Дмитрия Ивановича Менделеева; порядковый номер элемента 32, атомная масса составляет72,59. Германий - твёрдое вещество с металлическим блеском, имеющее серо-белый цвет. Хотя цвет германия - это понятие довольно относительное, здесь все зависит от обработки поверхности материала. Иногда он может быть серым как сталь, иногда серебристым, а иногда и вовсе черным. Внешне германий довольно близок к кремнию. Данные элементы не только похожи между собой, но и обладают во многом одинаковыми полупроводниковыми свойствами. Существенным их отличием является тот факт, что германий более чем в два раза тяжелее кремния.

Германий, встречающийся в природе, является смесью пяти стабильных изотопов, имеющих массовые числа 76, 74, 73, 32, 70. Еще в 1871 году известный химик, «отец» периодической таблицы, Дмитрий Иванович Менделеев предсказал свойства и существование германия. Он называл неизвестный в те времена элемент «экасилицием», т.к. свойства нового вещества были во многом схожи с кремнием. В 1886 году после исследования минерала аргирдит, немецкий сорокавосьмилетний ученый-химик К. Винклер обнаружил в составе природной смеси совершенно новый химический элемент.

Сначала химик хотел назвать элемент нептунием, ведь планета Нептун тоже была предсказана намного раньше, чем открыта, но затем он узнал, что такое название уже использовалось при лжеоткрытии одного из элементов, поэтому Винклер решил отказаться от данного названия. Ученому предложили наименовать элемент ангулярием, что в переводе значит «вызывающий споры, угловатый», но и с этим названием Винклер не согласился, хотя споров элемент №32 вызвал действительно очень много. Ученый по национальности был немцем, вот он и решил в итоге назвать элемент германием, в честь своей родной страны Германии.

Как выяснилось позже, германий оказался ни чем иным, как открытым ранее «экасилицием». Вплоть до второй половины двадцатого века практическая полезность германия была довольно узкой и ограниченной. Индустриальное производство металла началось лишь в результате начала промышленного производства полупроводниковой электроники.

Германий является полупроводниковым материалом, широко применяемым в электронике и технике, а также при производстве микросхем и транзисторов. В радарных установках используются тонкие пленки германия, которые наносятся на стекло и применяются как сопротивления. Сплавы с германием и металлами используются в детекторах и датчиках.

Элемент не обладает такой прочностью как вольфрам или титан, он не служит неисчерпаемым источником энергии как плутоний или уран, электропроводность материала также далеко не самая высокая, да и в промышленной технике главным металлом является железо. Несмотря на это, германий является одной из важнейших составляющих технического прогресса нашего общества, т.к. он еще раньше, даже чем кремний стал использоваться как полупроводниковый материал.

В связи с этим уместно было бы спросить: Что такое полупроводимость и полупроводники? На данный вопрос даже специалисты не могут ответить точно, т.к. можно говорить о конкретно рассматриваемом свойстве полупроводников. Есть и точное определение, но лишь из области фольклора: Полупроводник - проводник на два вагона.

Слиток германия стоит практически столько же, сколько и слиток золота. Металл очень хрупок, почти как стекло, поэтому, уронив такой слиток, есть большая вероятность того, что металл просто разобьется.

Металл германий, свойства

Биологические свойства

Для медицинских нужд германий наиболее широко стали использовать в Японии. Результаты испытаний германийорганических соединений на животных и человека показали, что они способны благотворно влиять на организм. В 1967 году японец доктор К. Асаи обнаружил, что органический германий обладает широким биологическим действием.

Среди всех его биологических свойств следует отметить:

  • - обеспечение переноса кислорода в ткани организма;
  • - повышение иммунного статуса организма;
  • - проявление противоопухолевой активности.

В последствии японские ученые создали первый в мире медицинский препарат с содержанием германия - «Германий - 132».

В России первый отечественный препарат, содержащий органический германий, появился лишь в 2000 году.

Процессы биохимической эволюции поверхности земной коры сказались не лучшим образом на содержании в ней германия. Большая часть элемента была вымыта с суши в океаны, так что содержание его в почве остается довольно низким.

Среди растений, которые обладают способностью абсорбировать германий из почвы, лидером является женьшень (германия до 0,2 %). Германий содержится также в чесноке, камфаре и алоэ, которые традиционно используются в лечении различных человеческих заболеваний. В растительности германий находится в виде полуоксид карбоксиэтила. Сейчас есть возможность синтезировать сесквиоксаны с пиримидиновым фрагментом – органические соединения германия. Данное соединение по своей структуре близко к природному, как в корне женьшеня.

Германий можно отнести к редким микроэлементам. Он присутствует во большом количестве различных продуктов, но в мизерных дозах. Суточная доза потребления органического германия установлено в размере 8-10 мг. Оценка 125-ти пищевых продуктов показала, что ежедневно с пищей в организм поступает около 1,5 мг германия. Содержание микроэлемента в 1 г сырых продуктов составляет около 0.1 – 1.0 мкг. Германий содержится в молоке, томатном соке, лососине, бобах. Но для того, чтобы удовлетворить суточную потребность в германии, следует выпивать ежедневно по 10 литров томатного сока или употреблять в пищу около 5 килограмм лососины. С точки зрения стоимости данных продуктов, физиологических свойств человека, да и здравого смысла тоже употребление такого количества германийсодержащих продуктов не возможно. На территории России около 80-90% населения имеет недостаток германия, именно поэтому были разработаны специальные препараты.

Практические исследования показали, что в организме германия больше всего в током кишечнике, желудке, селезенке, костном мозге и крови. Высокое содержание микроэлемента в кишечнике и желудке говорит о пролонгированном действии процесса всасывания препарата в кровь. Есть предположение, что органический германий ведет себя в крови примерно так же, как и гемоглобин, т.е. имеет отрицательный заряд и участвует в переносе кислорода к тканям. Тем самым он на тканевом уровне предупреждает развитие гипоксии.

В результате многократных опытов было доказано свойство германия активировать Т-киллеры и способствовать индукции гамма интерферонов, подавляющих процесс размножения быстро делящихся клеток. Основным направлением действия интерферонов является противоопухолевая и антивирусная защита, радиозащитные и иммуномодулирующие функции лимфатической системы.

Германий в форме сесквиоксида обладает способностью воздействовать на ионы водорода Н+, сглаживая их губительное действие для клеток организма. Гарантией отличной работы всех систем человеческого организма является бесперебойная поставка кислорода в кровь и все ткани. Органический германий не только доставляет кислород во все точки организма, но и способствует его взаимодействию с ионами водорода.

  • - Германий является металлом, но по хрупкости его можно сравнить со стеклом.
  • - В некоторых справочниках утверждается, что германий имеет серебристый цвет. Но так утверждать нельзя, ведь цвет германия напрямую зависит от способа обработки поверхности металла. Иногда он может казаться практически черным, в других случаях имеет стальной цвет, а иногда он может быть и серебристым.
  • - Германий был обнаружен на поверхности солнца, а также в составе упавших с космоса метеоритов.
  • - Впервые элементоорганическое соединение германия было получено первооткрывателем элемента Клеменсом Винклером из четыреххлористого германия в 1887 году, это был тетраэтилгерманий. Из всех полученных на современном этапе элементоорганических соединений германия ни одно не является ядовитым. В то же время большая часть олово- и свинецорганических микроэлементов, являющихся по своим физическим качествам аналогами германия, токсичны.
  • - Дмитрий Иванович Менделеев предсказал три химических элемента еще до их открытия, в том числе и германий, назвав элемент экасилицием за счет сходства с кремнием. Предсказание известного русского ученого было настолько точным, что просто поразило ученых, в т.ч. и Винклера, открывшего германий. Атомный вес по Менделееву был равен 72, в действительности он составил 72,6; удельный вес по Менделееву составил 5,5 в действительности - 5,469; атомный объем по Менделееву составил 13 в действительности - 13,57; высший окисел по Менделееву EsO2, в реальности - GeO2, удельный вес его по Менделееву составил 4,7, в действительности - 4,703; хлористое соединение по Менделееву EsCl4 - жидкость, температура кипения примерно 90°C, в действительности - хлористое соединение GeCl4 – жидкость, температура кипения 83°C, соединение с водородом по Менделееву EsH4 газообразное, соединение с водородом в действительности - GeH4 газообразное; металлоорганическое соединение по МенделеевуEs(C2H5)4, температура кипения 160 °C, металлоорганическое соединение в реалии - Ge(C2H5)4 температура кипения 163,5°C. Как видно из рассмотренной выше информации, предсказание Менделеева было удивительно точным.
  • - Клеменс Винклер 26 февраля 1886 года начинал письмо Менделееву со слов «Милостивый государь». Он в довольно вежливой форме поведал русскому ученому об открытии нового элемента, названного германием, который по своим свойствам был ничем иным, как за ранее спрогнозированным менделеевским «экасилицием». Ответ Дмитрия Ивановича Менделеева был не менее вежлив. Ученый согласился с открытием своего коллеги, назвав германий «венцом своей периодической системы», а Винклера «отцом» элемента, достойным носить данный «венец».
  • - Германий как классический полупроводник стал ключом к решению проблемы создания сверхпроводящих материалов, которые работают при температуре жидкого водорода, но не жидкого гелия. Как известно водород переходит в жидкое состояние из газообразного при достижении температуры –252,6°C, либо 20,5°К. В 70-е годы была разработана пленка из германия и ниобия,толщина которой составляла всего несколько тысяч атомов. Даная пленка способна сохранять сверхпроводимость даже при достижении температуры 23,2°К и ниже.
  • - При выращивании германиевого монокристалла на поверхность расплавленного германия помещается германиевый кристалл – «затравка», который постепенно поднимается при помощи автоматического устройства, при этом температура расплава немного превышает температуру плавления германия (составляет 937 °C). «Затравка» вращается, чтобы монокристалл, как говорится, «обрастал мясом» со всех равномерно сторон. Необходимо отметить, что во время подобного роста происходит то же, что и в процессе зонной плавки, т.е. в твердую фазу переходит практически один лишь германий, а все примеси остаются в расплаве.

История

Существование такого элемента, как германий, было предсказано еще в 1871 году Дмитрием Ивановичем Менделеевым, за счет своих сходств с кремнием элемент был назван экасилицием. В 1886 году профессор Фрейбергской горной академии открыл аргиродит, новый минерал серебра. Затем данный минерал довольно внимательно исследовал профессор технической химии Клеменс Винклер, проводя полный анализ минерала. Сорокавосьмилетнего Винклера по праву считали лучшим аналитиком Фрейбергской горной академии, именно поэтому ему предоставили возможность исследовать аргиродит.

За довольно короткие сроки профессор смог предоставить отчет о процентном соотношении различных элементов в исходном минерале: серебра в его составе было 74,72%; серы - 17,13%; закиси железа – 0,66%; ртути – 0,31%; окиси цинка – 0,22%.Но почти семь процентов – это была доля некого непонятного элемента, который, похоже, еще не был открыт в то далекое время. В завязи с этим Винклер решил выделить неопознанный компонент аргиродпта, изучить его свойства, и в процессе исследования понял, что на самом деле нашел совершенно новый элемент – это был экасплиций, предсказанный Д.И. Менделеевым.

Однако было бы неправильно подумать, что труды Винклера шли гладко. Дмитрий Иванович Менделеев в дополнение к восьмой главе своей книги «Основ химии» пишет: «Сначала (февраль 1886 года) нехватка материала, а также отсутствие спектра в пламени и растворимость соединений германия серьезно затрудняли исследования Винклера...» Стоит обратить внимание на слова «отсутствие спектра». Но как так? В 1886 году уже существовал широко используемый метод спектрального анализа. При помощи данного метода были открыты такие элементы, как таллий, рубидий, индий, цезий на Земле и гелий на Солнце. Ученые уже знали достоверно, что каждому без исключения химическому элементу свойствен индивидуальный спектр, а тут вдруг отсутствие спектра!

Объяснение данному явлению появилось немного позже. У германия есть характерные спектральные линии. Длина их волн составляет 2651,18; 3039,06 Ǻ и еще несколько. Однако они все лежат в пределах ультрафиолетовой невидимой части спектра, можно считать, удачей, что Винклер - приверженец традиционных методов анализа, ведь именно эти методы привели его к успеху.

Метод получения германия из минерала, который использовал Винклер, довольно близок к одному из современных промышленных методов выделения 32-го элемента. Сначала германий, который содержался в аргароднте, перевели в двуокись. Затем полученный белый порошок нагревался до температуры 600-700 °C в водородной атмосфере. При этом реакция оказалась очевидной: GeO 2 + 2H 2 → Ge + 2H 2 О.

Именно таким методом впервые был получен относительно чистый элемент №32, германий. Сперва Винклер намеревался назвать ванадий нептунием, в честь одноименной планеты, ведь Нептун, как и германий, был сначала предсказан, а только потом найден. Но затем выяснилось, что такое название уже однажды использовалась, нептунием был назван один химический элемент, открытый ложно. Винклер предпочел не компрометировать свое имя и открытие, и отказался от нептуния. Один французский ученый Район предложил, правда, потом он признал свое предложение шуткой, предложил назвать элемент ангулярием, т.е. «вызывающим споры, угловатым», но и это название не понравилось Винклеру. В результате ученый самостоятельно выбрал наименование своему элементу, и назвал его германием, в честь своей родной страны Германии, со временем данное название утвердилось.

До 2-й пол. ХХ в. практическое использование германия оставалось довольно ограниченным. Индустриальное производство металла возникло лишь в связи с развитием полупроводников и полупроводниковой электроники.

Нахождение в природе

Германий можно отнести к рассеянным элементам. В природе элемент вообще не встречается в свободном виде. Общее содержание металла в земной коре нашей планеты по массе составляет 7×10 −4 % %. Это больше чем содержание таких химических элементов, как серебро, сурьма или висмут. Но вот собственные минералы германия довольно дефицитны и весьма редко встречаются в природе. Почти все эти минералы являются сульфосолями, например, германит Cu 2 (Cu, Fe, Ge, Zn) 2 (S, As) 4 , конфильдит Ag 8 (Sn,Ce)S 6 , аргиродит Ag8GeS6 и другие.

Основная часть германия, рассеянного в земной коре, содержится в огромном числе горных пород, а также многих минералов: сульфитные руды цветных металлов, железные руды, некоторые окисные минералы (хромит, магнетит, рутил и другие), граниты, диабазы и базальты. В составе некоторых сфалеритов содержание элемента может достигать нескольких килограммов на тонну, например, в франкеите и сульваните 1 кг/т, в энаргитах содержание германия составляет 5 кг/т, в пираргирите - до 10 кг/т, ну а в других силикатах и сульфидах - десятки и сотни г/т. Небольшая доля германия присутствует практически во всех силикатах, а также в некоторых из месторождений нефти и каменного угля.

Основным минералом элемента является сульфит германия (формула GeS2). Минерал встречается как примесь в сульфитах цинка, других металлов. Важнейшими минералами германия являются: германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , плюмбогерманит (Pb,Ge,Ga) 2 SO 4 (OH) 2 ·2H 2 O, стоттит FeGe(OH) 6 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 и аргиродит Ag 8 GeS 6 .

Германий присутствует на территориях всех без исключения государств. А вот промышленными месторождениями данного металла ни одна из индустриально развитых стран мира не располагает. Германий является очень и очень рассеянным. На Земле большой редкостью считаются минералы данного металла, содержание германия в которых более хотя бы 1%. К таким минералам относятся германит, аргиродит, ультрабазит и др., в том числе и минералы, открытые в последние десятилетия: штотит, реньерит, плюмбогерманит и конфильдит. Месторождения всех этих минералов не способны покрыть потребность современной промышленности в данном редком и важном химическом элементе.

Основная же масса германия рассеяна в минералах других химических элементов, а также содержится в природных водах, в углях, в живых организмах и в почве. Например, содержание германия в обыкновенном каменном угле иногда достигает более 0,1%. Но такая цифра встречается довольно редко, обычно доля германия ниже. А вот в антраците германия почти нет.

Получение

При переработке сульфида германия получают оксид GeО 2 , при помощи водорода его восстанавливают до получения свободного германия.

В промышленном производстве германий добывается в основном как побочный продукт в результате переработки руд цветных металлов (цинковая обманка, цинково-медно-свинцовые полиметаллические концентраты, содержащие 0,001—0,1% германия), золы от сжигания угля, некоторых продуктов коксохимии.

Изначально из рассмотренных выше источников выделяют германиевый концентрат (от 2% до 10% германия) различными способами, выбор которых зависит от состава сырья. На переработке боксирующих углей происходит частичное выпадение германия (от 5% до10%) в надсмольную воду и смолу, от туда он извлекается в комплексе с танином, после он высушивается и обжигается на температуре 400-500°С. В результате получается концентрат, который содержит около 30-40% германия, из него германий выделяют в виде GeCl 4 . Процесс извлечения германия из подобного концентрата, как правило, включает одни и те же стадии:

1) Концентрат хлорируют при помощи соляной кислоты, смесью кислоты и хлора в водной среде либо иными хлорирующими агентами, которые в результате могут дать технический GeCl 4 . С целью очистки GeCl 4 применяется ректификация и экстракция примесей концентрированной соляной кислоты.

2) Осуществляется гидролиз GeCl 4 , продукты гидролиза прокаливают вплоть до получения оксида GeO 2 .

3) GeO восстанавливается водородом или аммиаком до чистого металла.

При получении самого чистого германия, который используется в полупроводниковых технических средствах, проводят зонную плавку металла. Монокристаллический германий, необходимый для полупроводникового производства, обычно получают зонной плавкой либо методом Чохральского.

Способы выделения германия из надсмольных вод коксохимических заводов были разработаны советским ученым В.А. Назаренко. В данном сырье германия не более 0,0003%, однако, при помощи дубового экстракта из них несложно осаживать германий в форме таннидного комплекса.

Основная составляющая танина - это сложный эфир глюкозы, где присутствует радикал мета-дигалловой кислоты, который связывает германий, если даже концентрация элемента в растворе очень мала. Из осадка, можно легко получить концентрат, содержание двуокиси германия в котором до 45%.

Последующие превращения уже будет мало зависеть от вида сырья. Восстанавливается германий водородом (как и у Винклера в 19в.), однако, сначала необходимо выделить окись германия из многочисленных примесей. Удачное сочетание качеств одного соединения германия оказалось очень полезным для решения данной задачи.

Четыреххлористый германий GeCl4. – это летучая жидкость, которая закипает всего при 83,1°C. Поэтому она достаточно удобно очищается дистилляцией и ректификацией (в кварцевых колоннах с насадкой).

GeCl4 почти нерастворим в соляной кислоте. Значит, для его очистки можно применять растворение примесей HCl .

Очищенный четыреххлористый германий обрабатывается водой, очищено при помощи ионообменных смол. Признак нужной чистоты - увеличение показателя удельного сопротивления воды до 15-20 млн Ом·см.

Под действием воды происходит гидролиз GeCl4:

GeCl4 + 2H2O → GeO2 + 4HCl.

Можно заметить, что перед нами «записанное задом наперед» уравнение реакции получения четыреххлористого германия.

После идет восстановление GeO2 при помощи очищенного водорода:

GeO2 + 2 Н2O → Ge + 2 Н2O.

В итоге получают порошкообразный германий, который сплавляется, а затем очищается способом зонной плавки. Данный метод очистки был разработан еще в 1952 г. специально для очистки германия.

Необходимые для придания германию того или иного типа проводимости примеси вводятся на завершающих стадиях производства, а именно при зонной плавке, а также во время выращивания монокристалла.

Применение

Германий является полупроводниковым материалом, применяемым в электронике и технике при производстве микросхем и транзисторов. Тончайшие пленки германия наносятся на стекло, применяют как сопротивление в радарных установках. Сплавы германия с различными металлами используют при производстве детекторов и датчиков. Диоксид германия широко используется в производстве стекол, имеющих свойство пропускать инфракрасное излучение.

Теллурид германия уже очень давно служит стабильным термоэлектрическим материалом, а также как компонент термоэлектрических сплавов (термо- значит э.д.с 50 мкВ/К).Исключительно стратегическую роль играет германий сверхвысокой чистоты в изготовлении призм и линз инфракрасной оптики. Крупнейшим потребителем германия является именно инфракрасная оптика, которую используют в компьютерной технике, системах прицела и наведения ракет, приборах ночного видения, картографировании и исследовании поверхности земли со спутников. Германий также широко используется в оптоволоконных системах (добавка тетрафторида германия в состав стекловолокно), а также в полупроводниковых диодах.

Германий как классический полупроводник стал ключом к решению проблемы создания сверхпроводящих материалов, которые работают при температуре жидкого водорода, но не жидкого гелия. Как известно водород переходит в жидкое состояние из газообразного при достижении температуры -252,6°C, либо 20,5°К. В 70-е годы была разработана пленка из германия и ниобия,толщина которой составляла всего несколько тысяч атомов. Даная пленка способна сохранять сверхпроводимость даже при достижении температуры 23,2°К и ниже.

Путем вплавления в пластинку ГЭС индий, таким образом, создавая область с так называемой дырочной проводимостью, получают выпрямляющее устройство, т.е. диод. Диод обладает свойством пропускать электрический ток в одном направлении: электронной области из из области с дырочной проводимостью. После вплавления индия с обеих сторон ГЭС-пластинки, эта пластинка превращается в основу транзистора. Впервые в мире транзистор из германия был создан еще в 1948 году, а спустя всего двадцать лет подобные приборы выпускались сотнями миллионов.

Диоды на основе германия и триоды стали широко использоваться в телевизорах и радиоприемниках, в самой разной измерительной аппаратуре и счетно-решающих устройствах.

Применяется германия также и в других особо важных областях современной техники: при измерении низких температур, при обнаружении инфракрасного излучения и др.

Для использования метла во всех этих областях требуется германий очень высокой химической и физической чистоты. Химическая чистота – это такая чистота, при которой количество вредных примесей не должно составлять более чем одну десятимиллионную процента (10 –7 %). Физическая чистота означает минимум дислокаций, минимум нарушений кристаллической структуры вещества. Для ее достижения специально выращивается монокристаллический германий. В данном случае весь слиток металла представляет собой всего один кристалл.

Для этого на поверхность расплавленного германия помещается германиевый кристалл – «затравка», который постепенно поднимается при помощи автоматического устройства, при этом температура расплава немного превышает температуру плавления германия (составляет 937 °C). «Затравка» вращается, чтобы монокристалл, как говорится, «обрастал мясом» со всех равномерно сторон. Необходимо отметить, что во время подобного роста происходит то же, что и в процессе зонной плавки, т.е. в твердую фазу переходит практически один лишь германий, а все примеси остаются в расплаве.

Физические свойства

Вероятно, мало кому из читателей данной статьи приходилось наглядно видеть ванадий. Сам элемент довольно дефицитный и дорогой, из него не делают предметов широкого потребления, а начинка их германия, которая бывает в электрических приборах мала настолько, что разглядеть металла не возможно.

В некоторых справочниках утверждается, что германий имеет серебристый цвет. Но так утверждать нельзя, ведь цвет германия напрямую зависит от способа обработки поверхности металла. Иногда он может казаться практически черным, в других случаях имеет стальной цвет, а иногда он может быть и серебристым.

Германий настолько редкий металл, что стоимость его слитка можно сравнивать со стоимостью золота. Германий отличается повышенной хрупкостью, которую можно сопоставить разве что со стеклом. Внешне германий достаточно близок к кремнию. Два этих элемента являются одновременно и конкурентами на звание важнейшего полупроводника, и аналогами. Хотя некоторые технические свойства элементом во многом схожи, что касается и внешнего облика материалов, отличить германий от кремния очень просто, германий тяжелее более чем в два раза. Плотность кремния составляет 2,33 г/см3, а плотность германия - 5,33 г/см3.

Но однозначно о плотности германия нельзя говорить, т.к. цифра 5,33 г/см3 относится к германию-1. Это одна самая важная и самая распространенная модификация из пяти аллотропических модификаций 32-го элемента. Четыре из них кристаллические и одна аморфная. Германий-1 является самой легкой модификацией из четырех кристаллических. Кристаллы его построены точь-в-точь также как и кристаллы алмаза, а = 0,533 нм. Однако если для углерода данная структура является максимально плотной, то у германия существуют и более плотные модификации. Умеренный нагрев и высокое давление (около 30 тысяч атмосфер при 100 °C) преобразует германий-1 в германий-2, структура кристаллической решетки у которого точно такая же, как у белого олова. Походим методом получают германий-3 и германий-4, которые еще более плотные. Все эти «не совсем обычные» модификации превосходят германий-1 не только по плотности, но и по электропроводности.

Плотность жидкого германия составляет 5,557 г/см3 (при 1000°С), темература плавления металла равна 937,5 °С; температура кипения составляет около 2700°С; значение коэффициента теплопроводности равно примерно 60 вт/(м (К), либо 0,14 кал/(см (сек (град) при температуре 25 °С. При обычной температуре хрупок даже чистый германий, но при достижении 550 °С он начинает поддаваться пластической деформации. По минералогической шкале твердость германия составляет от 6 до 6,5; значение коэффициента сжимаемости (в интервале давления от 0 до 120 Гн/м 2 , либо от 0 до 12000 кгс/мм 2) составляет1,4·10—7 м 2 /мн (или 1,4·10-6 см 2 /кгс); показатель поверхностного натяжения равен 0,6 н/м (или 600 дин/см).

Германий является типичным полупроводником с размером ширины запрещенной зоны 1,104·10 -19 , либо 0,69 эв (при температуре 25 °С); у германия высокой чистоты удельное электрическое сопротивление равно 0,60 ом (м (60 ом (см) (25 °С); показатель подвижности электронов равен 3900, а подвижности дырок - 1900 см 2 /в. сек (при 25 °С и при содержании от 8% примесей). Для инфракрасных лучей, длина волны которых более 2 мкм, металл прозрачен.

Германий довольно хрупок, он не поддается ни горячей ни холодной обработке давлением до температуры ниже 550 °С, если же температура становится выше, металл пластичен. Твердость металла по минералогической шкале составляет 6,0-6,5 (германий распиливается на пластины при помощи металлического или алмазного диска и абразива).

Химические свойства

Германий, находясь в химических соединениях обычно проявляет вторую и четвертую валентности, но более стабильны соединения четырехвалентного германия. Германий при комнатной температуре устойчив к действию воды, воздуха, а также растворам щелочей и разбавленным концентратам серной или соляной кислоты, зато элемент довольно легко растворяется в царской водке или щелочном растворе водородной перекиси. Элемент медленно окисляется под действием азотной кислоты. При достижении на воздухе температуры 500-700 °С германий начинает окисляться до оксидов GeO 2 и GeO. (IV) оксид германия - это белый порошок с температурой плавления 1116° C и растворимостью в воде 4,3 г/л (при 20 °С). По своим химическим свойствам вещество амфотерно, растворяется в щелочи, с трудом в минеральной кислоте. Его получают путем проникновения гидратного осадка GeO 3 ·nH 2 O, который выделяется при гидролизе Производные кислоты германия, например,германаты металлов (Na 2 GeO 3 , Li 2 GeO 3 , и др.) – это твердые вещества, имеющие высокие температуры плавления, могут быть получены путем сплавления GeO 2 и других оксидов.

В результате взаимодействия германия и галогенов могут образовываться соответствующие тетрагалогениды. Легче всего реакция способна протекать с хлором и фтором (даже в комнатной температуре), затем с йодом (температура 700-800 °С, присутствие СО) и бромом (при слабом нагревании). Одним из важнейших соединений германия является тетрахлорид (формула GeCl 4). Это бесцветная жидкость с температурой плавления равной 49,5 °С, с температурой кипения 83,1°С и с плотность 1,84 г/см3 (при 20 °С). Вещество сильно гидролизуется водой, выделяя осадок гидратированного оксида (IV). Тетрахлорид получают путем хлорирования металлического германия либо взаимодействием оаксид GeO 2 и концентрированной соляной кислоты. Известны еще и дигалогениды германия с общей формулой GeX 2 , гексахлордигерман Ge 2 Cl 6 , монохлорид GeCl, а также оксихлориды германия (к примеру, СеОСl 2).

При достижении 900-1000 °С с германием энергично взаимодействует сера, образуя дисульфид GeS 2 . Это твердое белое вещество с температурой плавления 825 °С. Возможны также образования моносульфида GeS и аналогичных соединений германия с теллуром и селеном, являющимися полупроводниками. При температуре 1000-1100 °С с германием незначительно реагирует водород, образуя гермин (GeH) Х, являющийся малоустойчивым и легколетучим соединением. Германоводороды ряда Ge n H 2n + 2 до Ge 9 H 20 могут быть образованы путем взаимодействия германидов с разбавленной HCl . Также известен гермилен с составом GeH 2 . Германий не реагирует с азотом непосредственно, но есть нитрид Gе 3 N 4 , который получается при воздействии аммиака на германий (700-800 °С). Германий не взаимодействует с углеродом. Со многими металлами германий образует различные соединения – германиды.

Известно множество комплексных соединения германия, приобретающих все большее значение в аналитической химии элемента германий, а также в процессах получения химического элемента. Германий способен образовывать комплексные соединения с гидроксилсодержащими органическими молекулами (многоатомные спирты, многоосновные кислоты и другие). Существуют и гетерополикислоты германия. Как и другие элементы IV-й группы германий характерно образовывает металлорганические соединения. Примером может послужить тетраэтилгерман (С 2 Н 5) 4 Ge 3 .

В человеческом организме содержится огромное количество микро- и макроэлементов, без которых полноценное функционирование всех органов и систем было бы просто невозможным. О некоторых из них люди слышат постоянно, а о существовании других вовсе не подозревают, но все они играют свою роль в хорошем самочувствии. К последней группе относится и германий, содержащийся в теле человека в органическом виде. Что это за элемент, за какие процессы отвечает и какой его уровень считается нормой - читайте далее.

Описание и характеристика

В общем понимании германий является одним из химических элементов, представленных в известной таблице Менделеева (относится к четвертой группе). В природе он представлен в виде твердого, серо-белого вещества с металлическим отблеском, но в человеческом теле содержится в органической форме.

Надо сказать, что его нельзя назвать очень редким, поскольку он обнаруживается в железных и сульфидных рудах и силикатах, хоть собственных минералов германий практически не образует. Содержание химического элемента в коре Земли превышает концентрацию серебра, сурьмы и висмута в несколько раз, а в отдельных минералах его количество доходит до 10 кг на тонну. Воды мирового океана содержат в себе около 6 10-5 мг/л германия.

Многие растения, произрастающие на разных континентах, способны абсорбировать небольшое количество данного химического элемента и его соединений из грунта, после чего они могут попасть и в организм человека. В органическом виде все такие составляющие принимают непосредственное участие в различных обменных и восстановительных процессах, о чем пойдет речь далее.

Знаете ли вы? Впервые данный химический элемент был замечен в 1886 году, а узнали о нем благодаря стараниям немецкого ученного-химика К. Винклера. Правда, до этого момента о его существовании говорил и Менделеев (в 1869 году), который сначала условно назвал его «экасилицием».

Функции и роль в организме

Еще совсем недавно ученные считали, что германий совершенно бесполезен для человека и в принципе не выполняет совершенно никакой функции в теле живых организмов. Тем не менее, на сегодняшний день, точно известно, что отдельные органические соединения данного химического элемента могут успешно использоваться даже в роли лекарственных составов, хотя на счет их эффективности говорить пока рано.

Опыты, проводимые на лабораторных грызунах, показали, что даже небольшое количество германия способно увеличить продолжительность жизни животных на 25-30%, а это уже само по себе хорошая причина задуматься о его пользе и для человека.
Уже проведенные исследования роли органического германия в человеческом организме позволяют выделить следующие биологические функции этого химического элемента:

  • предотвращение кислородного голодания организма путем перенесения кислорода к тканям (снижается риск так называемой «кровяной гипоксии», проявляющейся при снижении количества гемоглобина в эритроцитах);
  • стимуляция развития защитных функций организма путем подавления процессов распространения микробных клеток и активации специфических клеток иммунитета;
  • активное противогрибковое, противовирусное и антибактериальное воздействие за счет продуцирования интерферона, защищающего организм от вредоносных микроорганизмов;
  • мощное антиоксидантное воздействие, выражающееся в блокировке свободных радикалов;
  • задержка развития опухолевых новообразований и предупреждение образования метастаз (в данном случае германий нейтрализует действие отрицательно заряженных частиц);
  • выступает регулятором клапанных систем пищеварения, венозной системы и перистальтики;
  • за счет остановки движения электронов в нервных клетках, соединения германия способствуют снижению разнообразных болевых проявлений.

Все проводимые эксперименты, предусматривающие определение скорости распределения германия в человеческом организме после его перорального употребления, показали, что спустя 1,5 часа после приема больше всего данного элемента содержится в желудке, тонком кишечнике, селезенке, костном мозге, ну и, конечно же, в крови. То есть, высокий уровень германия в органах пищеварительной системы доказывает его пролонгированное действие при всасывании в кровоток.

Важно! Не стоит самостоятельно проверять на себе действие указанного химического элемента, ведь неправильный расчет дозировки вполне может привести к серьезному отравлению.

В чем содержится германий: продукты источники

Любой микроэлемент в нашем организме выполняет определенную функцию, поэтому для хорошего самочувствия и поддержания тонуса так важно обеспечить оптимальный уровень тех или иных составляющих. Это касается и германия. Пополнить его запасы, можно ежедневно употребляя чеснок (именно здесь его содержится больше всего), пшеничные отруби, бобовые культуры, белые грибы, томаты, рыбу и морепродукты (в частности, креветок и мидий), и даже , черемшу и алоэ.
Усилить же действие германия на организм можно с помощью селена. Многие из указанных продуктов без проблем найдутся в доме у каждой хозяйки, поэтому никаких трудностей возникать не должно.

Суточная потребность и нормы

Не секрет, что переизбыток даже полезных компонентов может навредить ничуть не меньше чем их недостача, поэтому, прежде, чем переходить к восполнению утраченного количества германия, важно знать о его допустимой суточной норме. Обычно это значение колеблется в пределах от 0,4 до 1,5 мг и зависит от возраста человека и имеющегося дефицита микроэлемента.

Человеческий организм хорошо справляется с абсорбцией германия (поглощение указанного химического элемента составляет 95%) и сравнительно равномерно распределяет его по тканям и органам (неважно идет речь о внеклеточном или внутриклеточном пространстве). Вывод германия наружу происходит вместе с мочой (выходит до 90%).

Дефицит и переизбыток


Как мы уже упоминали выше, любая крайность не к добру. То есть, как недостача, так и превышение количества германия в организме способно отрицательно сказаться на его функциональных особенностях. Так, при дефиците микроэлемента (является результатом его ограниченного потребления вместе с пищей или нарушения обменных процессов в организме) возможно развитие остеопороза и деминерализации костной ткани, а также в несколько раз повышается возможность онкологических состояний.

Чрезмерное количество германия оказывает отравляющее воздействие на организм, причем особо опасными считаются соединения двухлетнего элемента. В большинстве случаев его избыток можно объяснить вдыханием чистых паров в производственных условиях (ПДК в воздухе может составлять 2 мг/куб.м). При непосредственном контакте с хлоридом германия не исключены местные раздражения кожи, а его попадание внутрь организма часто чревато поражениями печени и почек.

Знаете ли вы? В медицинских целях описанным элементом впервые заинтересовались японцы, а настоящим прорывом в этом направлении стало исследование доктора Асаи, обнаружившего широкий спектр биологического действия германия.


Как видим, описанный микроэлемент действительно нужен нашему организму, пусть его роль пока и не до конца изучена. Поэтому, чтобы поддерживать оптимальный баланс просто кушайте побольше перечисленных продуктов и постарайтесь не находиться во вредных производственных условиях.